
J .  Fluid Mech. (1991), vol. 224, p p .  507-529 
Printed in Great Britain 

507 

On resonant nonlinear bubble oscillations 

By J. E. FFOWCS WILLIAMS AND Y. P. GUO 
Department of Engineering, University of Cambridge, Trumpington Street, 

Cambridge CB2 lPZ, UK 

(Received 15 May 1989 and in revised form 26 January 1990) 

If a bubble were produced with an initial surface distortion, the energy carried by 
surface modes could be converted to other modes by nonlinear interaction, a 
conversion that provides a possible mechanism of second generation by bubbles. 
Longuet-Higgins (1989a, b )  has argued that volume pulsation would be excited at 
twice the frequency of the distortion mode and that the response to such excitation 
is ‘surprisingly large’ when its frequency is close to the natural resonance frequency 
of the volumetrical mode. It is shown in this paper that this is feasible only if the 
driving system is sufficiently energetic to supply the energy involved in those volume 
pulsations, and that this is not generally the case. In the absence of external sources, 
the sum of energies in the interacting modes cannot exceed the initial bubble energy ; 
an increase in one mode is always accompanied by a decrease in another. I n  contrast 
to any expectation of significant pulsations near resonance, we find that, once modal 
coupling is admitted, the volumetrical pulsation has very small amplitude in 
comparison with that of the initial surface distortion. This is because of the 
constraint of energy, a constraint that becomes more severe once damping is 
admitted. Our conclusion therefore is that the distortion modes of a bubble are 
unlikely to be the origin of an acoustically significant bubble response. 

1. Introduction 
On account of recent interest in underwater sound generation by mechanisms 

associated with ocean surface motions, bubble oscillations, as a potential source of 
oceanic ambient noise, have attracted much research in recent years (see, for 
example, the proceedings of the NATO workshop on natural mechanisms of surface- 
generated noise in the ocean, held at Lerici, Italy, June 1987). Longuet-Higgins 
(1989a, b )  has considered the excitation of bubble volume pulsations by nonlinear 
interactions of bubble surface distortions and concluded that such excitations may 
be significant if the surface distortion frequency is close to half the pulsation 
frequency, which provides a possible mechanism for the conversion of purely surface 
distortion energy into radiative acoustic energy. 

Longuet-Higgins uses a direct perturbation scheme that predicts damping-limited 
volume pulsations near the resonance condition. Though these results point to the 
possibility of significant volume pulsations, they are not conclusive ; the solution is 
obviously unacceptable if the initial motion is called upon to give up more than its 
total energy. Initially, in order to establish clear bounds, we do a definite calculation 
by postulating an initial condition in which only the surface mode is active, and 
consider what the bubble’s subsequent behaviour would be if the distortion mode 
amplitude were maintained. Without damping the volumetric mode starts to grow 
linearly with time and the energy contained in this mode grows in proportion to the 
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square of time a t  resonance. The energy carried by the bubble cannot exceed its 
initial level; this sets a clear upper bound for the energy that may be transferred to  
the volumetric mode. The instant a t  which the growing pulsation energy reaches the 
level of the initial bubble energy then gives the maximum time for which the 
perturbation theory could possibly be relevant. We find that this maximum time is 
only about 4-5 periods of bubble oscillation. 

In  this direct perturbation scheme, the failure to account for the long-term 
behaviour of the bubble oscillations results from the failure to  account completely for 
the nonlinear coupling between the interacting modes. When a surface distortion 
mode is coupled to the volumetric mode, the surface mode cannot maintain a 
constant amplitude; it energizes the induced volumetric mode so that its own 
amplitude decays as the volume pulsation grows. Thus, even without any damping, 
the excited volumetric mode must be of strictly limited amplitude; coupling between 
two modes limits the amplitudes of both. This class of phenomenon has been 
extensively studied (e.g. Nayfeh & Mook 1979). One approach capable of accounting 
for the long-term coupling is the technique of multiple scales, which is the one we 
utilize in this paper. To demonstrate this, we admit the damping of the surface mode 
consequent on the driving of the volumetric mode, but neglect other damping effects. 
Thus, our model gives an upper bound for the volume pulsations due to  nonlinear 
interactions of surface modes ; damping due to acoustic, thermal and viscous effects 
would dissipate part of the initial bubble energy so that the pulsation amplitude 
would be further reduced. 

When resonance occurs, we find that both the surface distortion and the excited 
volume pulsation undergo modulation. At exact resonance, only amplitude 
modulations occur and the modulations are monotonic functions of time ; the volume 
pulsation increases as it draws energy from the surface distortion mode. Near, but 
not at, resonance, energy is exchanged cyclically between the surface and volumetric 
modes ; the oscillations in this case experience both amplitude and phase modulation. 
The phase modulation, which results in changes in the oscillation frequencies, has 
previously been observed and studied for oscillations of liquid drops (e.g. Trinh & 
Wang 1982 ; Tsamopoulos & Brown 1983). We shall show that the amplitudes of both 
modes are always bounded and the sum of the energies in the two modes is always 
equal to  the initial bubble energy ; the growing of one mode is accompanied by the 
decay of the other. We shall show that, in contrast to the direct perturbation 
scheme’s indication of large-amplitude pulsation near resonance, even when damping 
is ignored the induced volumetric mode has actually very small amplitude in 
comparison with that of the surface mode that is energizing the pulsation. This is 
because volume pulsation requires more energy than shape distortion if the two 
maintain the same amplitude of oscillation. I n  the case where energy comes from the 
initial bubble deformation in a purely surface mode, even if that  finite amount of 
energy were all converted into pulsation, the amplitude of the pulsation must be 
smaller than that of the surface mode. Damping makes it smaller still. For near 
resonance, we show that the surface distortion never reaches zero amplitude ; some 
of the initial energy always remains in the surface mode. 

2. General formulation 
We consider the oscillations of a gas bubble embedded in water that is assumed to 

be incompressible, inviscid and of infinite extent. It is convenient to formulate the 
problem in terms of non-dimensional variables. To this end, we follow Hall & 
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Seminara (1980) and choose r,,, the radius of the bubble a t  equilibrium, as the 
reference lengthscale, and (rip,/pm)f as the reference timescale, where pm is the 
constant density in water and p ,  denotes the constant pressure at  infinity. I n  the 
water, the incompressible irrotational motion can be described by the velocity 
potential that  satisfies the Laplace equation 

V$ = 0, (2.1) 

where $ is normalized by ( r ipm/pm) i .  We choose spherical coordinates ( r ,  0 , ~ )  such 
that the centre of the bubble coincides with the origin of the coordinate system, so 
that the bubble surface can be specified as 

f(r,  O , q ,  t )  = r -  1 - ~ ( O , T ,  t )  = 0, 

with 7 denoting the non-dimensional surfacc deformation and t the non-dimensional 
time. 

On the bubble surface r = 1 + q ,  the kinematic condition that particles in the 
surface always remain in it can be written as 

with D/Dt  = a/at+V$.V being the total derivative. In terms of the coordinates ( r ,  
0 , ~ )  and by introducing the surface gradient defined by 

the condition (2.2) becomes 

which is to  be applied on the bubble surface r = 1 +7 .  
The dynamic condition on the bubble surface is the balance between the pressure 

forces acting on both sides of it and the force due to surface tension, which, if 
viscosity is neglected, assumes the form 

pB=p+TV.nB? (2.4) 

where p ,  and p are respectively the pressures, normalized by pm, in the bubble and 
in water, T is the surface tension normalized by rOpm and nB represents the unit 
normal, pointing towards the water region, to  the bubble surface with its total 
curvature denoted by Van, (Lamb 1933). On the water side, the pressure p is given 
by the Bernoulli equation 

(2.5) p =  I----  ;(v$)z, 
at 

where the integration constant is set to equal to the non-dimensional pressure a t  
infinity, because both $ and its derivatives vanish as r +  CQ. The pressure p ,  in the 
bubble can be expressed in terms of the surface deformation 7, provided that the gas 
in the bubble is assumed to undergo adiabatic changes. In  this case, p ,  is related to  

V - irr (1 +7)3s in6dOd~,  
, - 3  0 0 

17-2 
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which is the instantaneous bubble volume divided by r i ,  through the static law 
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where y denotes the ratio of specific heats, V, = $T is the value of V, when the bubble 
is a t  equilibrium and 1 +BT is the non-dimensional pressure in the bubble a t  
equilibrium. For convenience, we introduce the ovcrbar to  denote the average over 
a unit sphere ; for example, 

I n r2n  

y ( 8, pl) sin 8 d0 dq. ~=itJ, J, 
Thus, we have 

b= 1+3q+3?+?, 
Kl 

from which the bubble pressure (2.6) can be written in terms of y as 
_ _  

p ,  = (1  + 2T) ( 1  + 37+ 37' + y3)-Y. (2.7) 

On substituting (2.5) and (2.7) into the dynamical boundary condition (2.4), it 
follows that 

( 1  + 2T) ( 1  + 37+ 3y2 + y3)-Y = 1 ---t(V$)z + TV -nB, (2.8) 
a$ 
at 

_ _  

to be imposed on the bubble surface r = 1 +y. 
The fact that both (2.3) and (2.8) are imposed on the oscillating bubble surface r 

= 1 + y  poses difficulties in solving the problem. However, if the bubble is only 
slightly deformed, at some initial instant, from its equilibrium spherical shape, it can 
be expected that the subsequent oscillations caused by such initial deformations will 
be of small amplitude compared with the bubble radius a t  equilibrium. In this case, 
we can expand both condit,ions from r = 1 + 7 to the position of the bubble surface 
a t  equilibrium r = 1, according to 

which is convergent for Iyl < 1. 
Applying the expansion to (2.7), the pressure in the bubble becomes 

p ,  = ( 1 + 2T) [ 1 - 3yq-3yF+ $( 1 + y )  $1, 
and it is straightforward to  derive (e.g. Longuet-Higgins 1 9 8 9 ~ )  

V - n ,  = 2- (2 + VE) y+2(v2 +yV," y), 

where V," = V,.V, and the results have becn truncated from the t,erm of order y3. 
Since $ and its derivatives are all of the same order as y, expansions of (2.3) and (2.8) 
to the order y2 are found to be 

a2$ %+ T(2 + V,") y - 3y( 1 + 2T) q = 2T(y2 + yV," y) -7 ~- 
at ar at 

I 
(2.10) 

which are now both to be applied a t  r = 1 
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To complete the formulation, initial conditions must be specified. Since our 
concern here is the way in which surface distortion motions are converted into 
volume pulsations, we can specify the initial conditions, without loss of generality, 
as 

(2.11) 

where 6 is a small parameter, introduced here to  ensure that the bubble oscillations 
are of small amplitude so that the Taylor expansion (2.9) applied to the boundary 
conditions is convergent, and S,(O,q)  is the spherical harmonic function of order 1 
(e.g. Lamb 1933; Gradshteyn & Ryzhik 1980). We assume that 1 is larger than one, 
the initial deformation being a purely surface distortion. 

7 = eS,(O,v) and 2 = 0 at t = 0, 
at 

3. Energy conservation principle 
For inviscid bubble oscillations in an incompressible liquid, according to  our 

initial-value calculation all the energy initially lies in the deformation of the bubble 
surface. The total energy a t  any instant must be equal to  this initial value, though 
it may be exchanged, as a result of oscillation, from one form to another (from kinetic 
energy to surface tension energy, for example), and transferred between different 
modes through nonlinear interactions. It is appropriate to establish a conservation 
principle which can, on the one hand, give insight to  the energetics of the oscillation 
process without directly solving the problem, and on the other hand, serve as a check 
on the solutions which we will discuss in the subsequent sections. 

The energy equation can be derived by starting with the inviscid non-dimensional 
momentum equation DVq5IDt + Vp = 0. By taking the scalar product of this with 
V$, transferring it into the differential operators by using (2.1), an energy equation 
can be derived : 

(3.1) 
D 

~ w 4 ) 2 1  + v -  (PW) = 03 

which simply states that the variation in the kinetic energy of a fluid particle, which 
is also its total energy since compressibility of the water is neglected, is equal to the 
work done by the pressure acting on it. 

Integrating the energy equation (3.1) over the entire water region and transferring 
the second term into surface integrals through the divergence theorem, we find that 

where S ,  denotes the control surface at infinity with unit outwards normal n ,  and 
S, represents the bubble surface. Considering that the pressure at infinity is 
essentially equal to 1 and that on the bubble surface is given by (2.4), this can be 
rewritten as 

In the Appendix, it is shown that the four terms in this equation are respectively the 
rate of change in the total kinetic energy in water, the work done at infinity by p,, 
the internal energy of the bubble and the energy associated with surface tension, all 
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being non-dimensionalized by r: p,. If we denote the four components respectively 
by E,, E,, E ,  and E,, we have 

d 
dt -(E,+E,+E,+E,) = 0, (3.2) 

which, since, for the initial-value problem where there is no kinetic energy in the field 
a t  the initial instant, all the energy comes from the initial surface deformation, 
becomes 

(3.3) 

The initial bubble energy may be distributed among the four components, but 
their sum is always equal to this initial value. This is, of course, the consequence of 
neglecting both dissipation and radiation; if these are taken into account, the bubble 
oscillations will be damped owing to  energy losses. Equation (3.3) is derived from the 
governing equation with fully nonlinear boundary conditions so that E,, E,, E, and 
E ,  are the total energies; they not only contain the excess energy (of second order 
in the perturbation variables) but also the zeroth-order, first-order and higher-order 
terms (see the Appendix for the definitions of E,, Ew, E, and E T ) .  Though this way 
of deriving the energy equation clearly constrains the energy exchange process 
among different forms, it is also useful and instructive to  cast the energy equation 
solely in terms of the second-order quantities in the perturbation variables, so that 
the way in which energy is converted between different modes can be made clear. 

In  the Appendix, it is shown that the four components E,, E,, E ,  and ET can all 
be expressed in terms of the perturbation variables T,I and 4.  By making use of (A 16) 
and (A 17) for E, and E,, the initial energy in the bubble can be evaluated from the 
initial condition (2.11), which gives 

(3.4) 

where use has been made of the formulae (Gradshteyn & Ryzhik 1980) 

The terms in the large parentheses on the right-hand side of (3.4) are the sum of the 
surface tension energy and the internal energy in the bubble a t  equilibrium state, and 
the second term is the excess energy over this value a t  the initial instant, which is 
the part that energizes the bubble oscillations. On substituting (A 14)-(A 17) into 
(3.3), with the initial energy given by (3.4), it  follows that 

This energy equation only involves second-order quantities ; the zeroth- and first- 
order energies are conserved within themselves. 

To demonstrate the energy relations between different modes, we notice that the 
bubble oscillations can be decomposed into spherical harmonics of the form 
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When these are inserted into (3.5), with the use of the formulae (Gradshteyn & 

Ryzhik 1980) I 1  

and 

l o  otherwise, 

when n = n' 
n(n+ 1) 

V,S,(8,q)-V,Sn,(8,q) = 2n+ 1 I- 
( 0  otherwise, 

the principle of energy conservation becomes 

where E,(t)  is the energy contained in the nth mode and is defined by 

(3.6) 

(3.7) 

with on being the natural frequency of the nth mode in linear oscillation, which is 
given by (e.g. Lamb 1933 and Strasberg 1956) 

f 3y( 1 + 2T) - 2T when n = 0 

w' = l T ( n -  1) ( n +  1) (n+2)  otherwise. 

Equation (3.6) reveals the energy relation between different modes ; the initial bubble 
energy which is in the form of surface distortion may be transferred to  other modes, 
which, as will be shown in the following sections, can only occur through resonant 
nonlinear interactions. The sum of the energies in all the modes in the interaction is 
always equal to the initial bubble energy. 

4. Solution by direct expansion 
Since the initial condition (2.11) contains a small parameter E ,  it  is natural to seek 

solutions rj and 9 in terms of a power series of E .  This is the method used by Longuet- 
Higgins (1989a, b ) .  In  this section, we re-examine this method to reveal its 
limitations. In this scheme, conventional power series expansions are applied : 

On substituting these into (2.1) and (2.10), and grouping terms of order E ,  the first- 
order problem is found to be precisely the linear oscillation problem, the solutions of 
which comply with the initial conditions (2.11) (e.g. Lamb 1933): 

'I(') = cos w, t s, (8, fp), 

= x s i n  w1 t x,(B, cp) r l f l .  
I f 1  

The second-order velocity potential $75(2) also satisfies the Laplace equation, but the 
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boundary conditions relating $(2) to f 2 )  are no longer homogeneous. Instead, the 
nonlinear terms in (2.10) are to be calculated from the first-order solutions T,J(') and 
$(*). By expressing these nonlinear terms in terms of the spherical harmonic 
functions, the boundary conditions for $(') and rf ')  are found to be (for details, see 

Longuct-Higgins 1989 a )  a p )  a$(') 
n 

n n l  

(4.3) 

- sin 20, t C a, s,(e, v), 
at ar 

a p )  
at 

-+ T(2+ V:) ~'"--3y(l  + 2 T ) p  = C O S ~ W ,  tCP,fJ,(O,v) + S,(B,v), 

where the sum is from zero to 21 and contains only even-order terms because w,, p, 
and pn vanish for odd n, according to their definitions (see, for example, Gradshteyn 
& Ryzhik 1980) 

Since the initial deformation (2.1 1 )  is of order e, the second-order initial conditions 

a p  
at 

are simply 

(4.5) ~ ( 2 )  = - = 0 a t  t = 0. 

Considering the boundary condition (4.3) and the initial condition (4.5), the solutions 
for $(') and rfz) can be assumed to be of the form 

with w,  and w,  given by (3.8). The solution to this subject to the initial condition (4.5) 
is 

(cos 2w, t - cos wn t ) ,  20, a n  - (n+ 1)  P n  
(4.7) P n  7:) = (n+l)-(coswnt-1)+ 4 w; - (20,)' 

which in turn yields 

(4.8) 

If 2w, is not close to w,,  $(') and q(2)  are oscillatory and are of order one, so that 
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FIGURE 1. The energy level in the induced pulsation mode according to the direct perturbation 
scheme, with 1 = 6 and the dashed curve indicating the tZ growth. 

the second-order solutions can be neglected compared with the first-order quantities. 
The second-order terms may become important if 2wl+w,. Since we are mainly 
concerned with the excitation of volume pulsations, we may let n = 0 and 2w, + w,, 
in which case the solutions (4.7) and (4.8) represent the excited volumetric mode in 
the form 

This result shows that the excited volumetric mode is oscillatory but its amplitude 
grows linearly with time. This is not an acceptable solution; it violates the 
assumption that 171 < 1, which is essential to ensure the convergence of the Taylor 
expansion in the boundary condition (2.10). According to Prosperetti & Lu (1988), 
large-amplitude cavitations are unlikely to occur for bubbles in the upper ocean 
surface layer, which justifies the assumption 171 < 1. In any event, the geometrical 
constraint on the bubble oscillation requires that its amplitude must be smaller than 
the radius of the bubble a t  equilibrium. The ever-growing-amplitude solution simply 
indicates the breakdown of the direct perturbation scheme at large time. 

The excitation of the volumetric mode (4.9) implies of course that the energy in the 
surface distortion mode (the lth mode) is transferred to the pulsation mode. From 
(4.9), it is easy to calculate the energy contained in the volumetric mode according 
to the definition (3.7): 

{ (4Z- 1)2 (w, t)z + 8(81+ 5)’ ( 1  - cos W ,  t) + (464Z2 T(Z-1) (1+2) Eo(t) = €2 
256(1+ 1) (21+ 1)2 

+ 5041 + 125) sin2 w, t + (41- 1 )  [4(8Z+ 5 )  + 2( 121 + 7)  cos w, t ]  w, t sin wo t}, (4.10) 

where (4.4) has been utilized to calculate a,, Po and p,. This pulsation energy 
increases in proportion to the square oft ,  as shown in figure 1. This eventually does 
not conform with the principle of energy conservation (3.6) that  the bubble energy 
cannot exceed its initial value. As time increases, the ever-growing energy level 
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FIGURE 2. The time when the pulsation energy reaches the initial bubble energy for E = 0.1. 

exceeds the initial bubble energy, indicating the failure of the perturbation theory. 
The time at  which the energy in the pulsation mode reaches the initial bubble energy 
can be found by solving the equation 

(41- 1)' (wg t)' + 8(81+ 5)' (1  - cos w0 t )  + (41 - 1 )  [4(81+ 5) + 2( 121 + 7)  cos w0 t ]  

256(1+ 1 )  (21+ 1 )  
€2 

x wo t sin w,, t + (46412 + 5041 + 125) sin2 wg t = I (4.11) 

for t ,  which results from equating (4.10) to the initial bubble energy. This time sets 
a maximum time within which the direct perturbation scheme could conceivably be 
relevant. As an example, the solutions of (4.11) are plotted in figure 2 for 6 = 0.1, 
which is likely to  be the order of surface distortion for bubbles in the ocean surface 
layer and corresponds to the case examined by Longuet-Higgins (1989b). In this 
case, the maximum time depends on the order 1 of the surface distortion mode but 
the variation for different 1 at 1 larger than 5 is very small. For the problem of oceanic 
noise generation, the frequency range is from about 1 kHz of tens of kHz (Wenz 
1962; Urick 1967) and the bubble radius from 0.01 cm to 1 cm (Minnaert 1933; 
Fitzpatrick & Strasberg 1957; Toba 1961). I n  this case, the resonance condition wo 
= 2w, requires that 1 should be well above 5. Thus, it can be seen from figure 2 that 
the maximum time for which the direct perturbation model might possibly be 
relevant is only about 4 to 5 cycles of the bubble oscillation even when the dissipation 
is neglected. The method is fundamentally inadequate for relating the strength of 
a periodic volumetric oscillation to  its origin in the bubble distortion. 

5. Multiple-scales formulation 
I n  anticipating that the modes which nonlinearly interact with each other will be 

modulated, we introduce a slow timescale to characterize this modulation r = ct, and 
regard the dependent variables 7 and as functions of both t and 7. This technique 
of introducing two timescales in the study of bubble oscillations has been used by 
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Hall & Scminara (1980). In  this formulation, the time derivatives in the boundary 
conditions (2.10) are replaced by 

- + s - .  

Substituting the expansions (4.1) into the governing equation (2.1) reveals that both 
the tirst- and second-order velocity potential satisfies the Laplace equation. Applying 
the expansion to the boundary condition (2.10) and grouping terms of the same order 
in E ,  it can be shown that the first-order boundary condition is still linear and 
homogeneous as in the previous section, but the second-order one is supplemented by 
both the nonlinear terms determined from the first-order solutions and terms 
involving derivatives with respect to 7 ,  which are found to be 

a a  
at a7 

The initial condition (2.11) now becomes 

Supposing that the first-order problem has solutions of the form 

the linear boundary conditions then give the equation for qg)( t ,  7 )  : 

which has the general solution 

(5.4) 

where complex notations are used so that Cn is the complex amplitude of the nth 
mode with C: being its complex conjugate. To account for the interactions between 
the initial surface distortion (the lth mode) and the volumetric mode, we assume that 
thc complex amplitude C,  for these two modes are functions of the slow time 7 ,  so 

71;) = t[cn eiunt + C,* e-ht] ,  

that 
\Cn(7) when n = 0 , l  

Cn = 1 
constant otherwise. 

From this, it can be shown that Cn = 0 unless n = 0 or n = 1 because both vil) and 



518 J .  E .  Ffowcs Williams and Y.  P .  Guo 

its derivative with respect to t vanish a t  the initial instant for n + 0 and n =/= 1. Thus 
the series solutions (5.3) degenerates to 

I q(1) = qp+qps,(o,@, 
I 

(5 .5)  

where 7:') and qi') are given by (5.4) and $2) and $1') are defined, with n = 0 and 
n = 1, by 

The complex amplitudes C, and C, are to be determined from the next-order problem 
with the initial conditions 

C, = 0 and C, = 1 at 7 =  0, (5.7) 

which follows from substituting (5.4) and (5.5) into the initial conditions (5.2). 
With 7'') and $(') given by (5.4) and (5.5), the terms on the right-hand sides of (5.1) 

can be evaluated. Furthermore, q ( 2 )  and $(2) can be assumed to be of the form (4.6), 
so that two equations for qi2) and qj2) can be derived by respectively multiplying (5.1) 
by So and S,, and then taking averages of the results. When this is done, we find that 

ac, . 
~ + w; qj2) = :[3w," - (1 - 1) w: - 3w, w,] c, c: e i (wo-wl) t  - iw - elwlt + Q l ,  (5.9) 
d2qi2) 

dt2 a7 
where Qo and Q, are introduced to  denote 

49, = [$&y + 2)  + T(3y  - l ) ]  C: eeiwot 

+ Y + T(3y  - 1 )I Co C,* + 

4&, = [3w' - (I- 1 )  w i  + 3w, w,]  C, C, ei(wo+wi)t 

5 0 2  

2 1+ 1 
+% [ T(l + 1)  (13 + 1212 + 91 - 18) @-I (V, S# S,] Cf e2iwlt 

and we have omitted complex-conjugate terms on the right-hand sides of (5.8) and 
(5.9) to save space. 

Now, the usual argument of the multiple-scales technique applies. To render the 
series expansion (4.1) uniformly valid a t  large time, it is required that the higher- 
order terms in the expansion should not be more singular than the lower-order terms 
(Nayfeh & Mook 1979). The behaviour of qi2) and qj2) depends on the forcing terms 
on the right-hand sides of (5.8) and (5.9), of which those in proportion to exp ( fiw,t) 
in (5 .8)  and to exp ( &  iw, t )  in (5.9) are secular terms that would result in the ever- 
growing, and hence unacceptable, solution. These solutions have worse behaviour a t  
large time than the first-order solution (5 .5)  so that must be annihilated. This can 
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be done by letting the secular forcing terms in (5.8) and (5.9) vanish, which results 
in two equations to determine the complex amplitudes C0(7) and C,(r). Depending on 
whether w, is away from, close to or cxactly equal to  264, the secular forcing terms 
are different for each case. The simplest case is when 2w, is not close to w,, which is 
the trivial case of non-resonant oscillations. In this event, the only secular terms in 
(5.8) and (5.9) are those involving derivatives with respect to r. Setting them to zero, 
it follows immediately that 

dC dC 
dr dr  
0- -0 ,  A = o .  

The oscillations are not modulated, as is expected because there is no interaction 
between the two modes in this non-resonance case. The amplitudes are then identical 
to the initial value (5.7). For the cases where w, is exactly equal to or close to  2w,, 
the solutions are much more complicated, and these are examined in the following 
sections. 

6. Exact resonance,w, = 2w, 

In  the case of w, = 2w,, exact resonance occurs between the Zth mode and the 
volumetric mode. From (5.8) and (5.9), it is clear that the secular forcing terms in this 
case are the first two terms on the right-hand sides. By setting these terms to zero, 
the equations for determining the complex amplitudes C, and C, can be found to be 

It can be recognized that these equations are similar to those associated 
oscillation systems of two degrees of freedom with quadratic nonlinearities and 

(6.1 ) 

with 
their 

solutions can be found by following the procedure of, say, Nayfeh & Mook (1979), 
which we give briefly in the following. It is not surprising that, despite the 
complicated physical background, the amplitudes of the bubble oscillations conform 
with the simple equations (6.1); the resonant interactions between the two modes 
resemble precisely an oscillation system of two degrees of freedom and the truncation 
of the Taylor expansion (2 .9)  up to the order q2 results in the quadratic nonlinear 
behaviour. 

To facilitate the solution, we write the complex amplitudes C,  and C,  in terms of 
their amplitude and phase 

C, = a, ciao, C, = a, eiar, (6.2) 

which separates the modulation of the bubble oscillation into an amplitude and a 
phase component, where a,, a,, 01, and 01, are all real functions of r.  On substituting 
(6.2) into (6.1), the real parts of these equations lead to 

duo ( 4 Z - l ) ~ ,  -+ 
dr 16(2Z+ 1 )  ( I +  1 )  

at sin 0 = 0, 

da, ( 4 Z - l ) ~ ,  
dr 4 

a, a, sin 0 = 0, -- 

(6 .3a)  

(6.3b) 
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where for brevity 0 replaces 2a,-a0. Eliminating sin@ from these equations, it is 
found that 

da2 2 = 0. 
4(2Z+ 1 )  ( I +  1 )  d7 

This is in fact the energy equation for the oscillations, which can be shown by 
substituting the solution (5.5), with qk’), q:”, #!) and $1’) given by (5.4) and (5.6), into 
the energy equation (3.6). This immediately gives (3.6) in the form 

(6.4) 
1 da: -+ 

d7 

1 
4(2Z+ 1 )  (Z+ 1 )  ’ 

c,c: = 
1 

““““*4(2Z+ 1) (I+ 1 )  

which, by taking the derivativc with respect to 7 ,  is precisely identical to (6.4). 
The imaginary parts of (6.1) yield two equations for a, and a,: 

da, (4z-l)Ul 
a,-- a; cos 0 = 0, 

d7 16(2Z+ 1 )  ( Z +  1 )  

da, (4Z-l)ut 
a, a, cos 0 = 0, 

4 
a, -- 

d7 

which can be further combined to give an equation for 0 = 2a,-u0: 

By using the chain rule of differentiation to write 

dO dOda,, 
d7 da, d7 ’ 
- - -- - 

( 6 . 6 ~ )  

(6.6b) 

and utilizing ( 6 . 3 ~ )  to eliminate d a , / d ~  with a, given in terms of a, by (6.5), this 
equation can be integrated directly with the result 

-a: = constant. I 1 

[4(.2l+ 1 )  (If 1 )  
a, cos 0 

Since a,, = 0 at  7 = 0, the integration constant must be set to zero, which in turn gives 
cost3 = 0. Thus, (6.6) reduces to 

dao - da, - 0, 
d7 d7 

which means that the oscillations do not undergo phase modulation. From the initial 
conditions (5.2) and the fact that the amplitude of the volumetric mode increases a t  
small 7 (da,/dT > 0), it  follows that a, = 0 and a, = an. This yields sin 0 = - 1 and 
the amplitude equation (6.3) for a, becomes 

da, ( 4 Z - 1 ) ~ ~  1 _- 
d7 

where (6.5) has been used to  eliminate a,. This equation can be integrated 

3 
immediately to give 

(41- 1 )  w 0 7  
tanh [ 1 

2[(21+1) (Z+ 1)]i 16[(21+ 1) ( 1 +  l)]: ’ aO(7) = 

The amplitude a, can thcn be found from this and (6.5). Collecting all the results 
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FIGURE 4. The ratio of the  maximum amplitudes of the two modes in exact resonance. 

derived above, we see that in this case of exact resonance, the oscillations only 
experience modulations and the modulations are monotonic functions of 7 ;  the 
surface distortion mode continuously feeds energy into the pulsation mode until the 
initial bubble energy is all in the volumetric mode. These results are all plotted in 
figure 3. 

It is interesting to note from figure 3 that the maximum amplitude of the induced 
volumetric mode is much smaller than that of the surface distortion mode. This is 
because pulsations need more energy than pure shape distortions in order to  maintain 
the same perturbation amplitude. In  the present problem, the finite initial bubble 
energy is given in the form of pure shape oscillations, so that, when this finite amount 
of energy is converted into the volumetric mode to energize pulsations, the amplitude 
of the pulsations must be smaller than that of the surface mode with the same energy 
level. The maximum amplitude of the surface distortion can be found by simply 
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letting a, be zero in the energy equation (6.5) and that of the pulsation mode can be 
obtained by letting 7++co in (6.8), which leads to 

The ratio of the two is shown in figure 4 as a function of the order of the surface mode 
1, which can be seen to decrease, from about 0.13 at  Z = 2, continuously to zero as 2 
increases. The decrease a t  large 1 is in proportion to  1/2. This result is in contrast to 
the direct perturbation prediction that large-amplitude pulsation is possible a t  
resonance. It is clear that  the principle of energy conservation leads to the conclusion 
that only small-amplitude pulsations can be excited. This becomes even more 
pronounced in the case of near resonance, which we examine in the next section. 

7. The case of near resonance 
In the case of near resonance where w, is close, but not exactly equal, to 2w,, the 

interactions between the two modes show different characteristics. To demonstrate 
this, we assume that w, = 2w,(l +€). 

From this and since 7 = ~ t ,  the vanishing of the secular forcing terms in (5.8) and (5.9) 
yields 

Comparing this with (6.1) for the case of exact resonance, it is clear that the 
difference is the presence of exp ( +oo7) in (7 .1) .  Following the same procedure, we 
introduce (6.2) into (7 .1 ) ,  the real and imaginary parts of which can be shown to give 
four equations identical to (6.3) and (6.6), provided that we now define 0 as 

0 = 2a,-a,-w07. 

The energy equation (6.4) can then be derived in the same way and the equation for 
0 now assumes the form 

By making use of (6.7), we can change d7 to da,, which leads to 

a,da, = 0. 
32(2Z+ 1 )  ( 2 +  1 )  

a; cos 0 da, -a; a, sin OdO - 8(2Z+ 1 )  ( Z +  1 )  a: cos 0 da, + 
(41- 1 )  

The first three terms can be shown to be equal to d(a ;  a, cos 0). The integration of the 
above equation then gives 

a, = 0, 
16(2Z+ 1 )  (I?+ 1 )  

(41+ 1 )  
a; cos 0 + 

where the integration constant has been set to zero according to the initial condition 
(5.2). From this result, the amplitude equation for a, can be found as 

256(2Z+ 1)'(1+ 1)' 
a:] 

(41- 1 )  W ,  

(41- 1 ) 2  

da, - 
d7 16(21+ 1 )  ( Z +  1 )  (7.3) 
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Using (6 .5)  to eliminate a,, the integration of this equation can be transformed to the 
form 

where k = A J A ,  with A ,  - defined by 

2 (41- 1)2  
A ,  =-[(1+ (41- 1) 16(2l+ 1 )  (1+ 1 )  

The equation (7.4) is a standard form for the elliptic functions, which has the solution 

where sn is the Jacobian elliptic function (Gradshteyn & Ryzhik 1980). 
With a, given by (7.5), a, can be found from the energy equation (6 .5) ,  and these 

are both plotted in figure 5.  It can be seen that the amplitude modulations are 
oscillatory in time, indicating that energy is cyclically exchanged between one mode 
and the other. Again, both modes are bounded and the sum of their energies is always 
equal to the initial bubble energy. 

From the results (7.2) and (6.6), the equation for the phase modulation a, can be 
obtained : -+tio da, = 0, 

d7 

which, with the initial condition a,(O) = in, immediately yields 

4 7 )  = ;n+&J,7. 

On substituting this result, together with (6.2), into (5.4), the complete solution for 
the volumetric mode becomes 

T , J ~ )  = a,(7)sin [ w o t ( l + 0 . 5 e ) ] .  

It is clear that the volume pulsation is not exactly a t  the frequency for the linear 
problem ; nonlinear interactions cause a modulation that changes the pulsation 
frequency. The modulation of frequency due to nonlinear interactions has previously 
been observed and studied for oscillations of liquid drops (e.g. Trinh & Wang 1982 ; 
Tsamopoulos & Brown 1983). The surface distortion mode also experiences a phase 
modulation which can be found from (7.2) and (6 .6b) .  It can be shown that a, is given 

da, a; - - + 2( 21 + 1 ) ( 1  + 1 ) w, 7 j  - 0, 
d7 a, 

which can be integrated, with a,(O) = 0, to give 

a1(7) =-2(2Z+l ) ( l+ l )w ,  1 - $:::{ dr’. 

With a, and a, given by (7.5) and (6 .5) ,  this can be readily evaluated. The phase 
modulation for the surface mode also causes a reduction in the oscillation frequency, 
because a, is negative. 

As in the case of exact resonance, figure 5 shows that the volumetric pulsation is 
much smaller in amplitude than the surface distortion. The maximum amplitude for 
the surface mode is 1, which is clear both from figure 5 and from the energy equation 
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FIGURE 6. The ratio of the maximum amplitudes of the  two modes in the near resonance. 

(6.5) with a, = 0, and the maximum pulsation amplitude can be found by setting 
d a , / d ~  to zero in (7.3), which shows that this maximum is simply A_. Thus, the ratio 
of the two can be written as 

For I = 2 this is about 0.03 and for large Z it decreases in proportion to  1/Z, as in the 
case of exact resonance, which is clearly shown in figure 6. Comparing figure 6 with 
figure 4, i t  can be seen that the volume pulsation has an even smaller amplitude in 
the case of near resonance, because some of the initial bubble energy in this case 
always remains in the surface mode, which is evident from figure 5 where we can see 
that the surface mode never reaches zero amplitude, 
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8. Discussion and conclusion 
We have examined the problem of bubble pulsations due to the resonant nonlinear 

interactions of bubble shape oscillations. The nonlinear coupling between the surface 
mode and the volumetric mode is taken into account by resorting to the technique 
of multiple scales, which formulates the problem as an oscillation system with two 
degrees of freedom. The results show that, when resonance occurs, both the surface 
mode and thc induced pulsations experience modulation. It is this modulation that 
causes energy conversion from one mode to the other. We have also shown that a 
direct perturbation approach to this problem fails to conform with the principle of 
energy conservation because the long-term coupling is not taken into proper account. 

At exact resonance, the energy conversion is monotonically from the surface mode 
to the volumetric mode, but energy is exchanged cyclically between the two near, but 
not a t ,  resonance, indicating both amplitude and phase modulation. It has been 
shown that both the surface distortion and the volume pulsation are bounded and 
the sum of energies in the two interacting modes is always equal to the initial bubble 
energy; an increase of amplitude in one mode is always accompanied by a decrease 
in the other. Because volume pulsation contains much more energy than shape 
distortion if the two maintain the same amplitude of oscillation, it is shown that the 
pulsations induced by a pure initial surface distortion have a much smaller amplitude 
than the surface mode with the same energy level. If the interacting surface mode is 
of high order, the induced pulsation has an increasingly smaller amplitude as the 
order of the surface distortion increases. 

The analysis presented in this paper gives an upper bound on the volume pulsation 
because it neglects both radiation and dissipation effects. These are important 
features of bubble oscillations that can also influence the conversion of energy from 
the surface mode to the volumetric mode. However, they hardly increase the energy 
in the volumetrical mode. The volume pulsations due to nonlinear interactions of 
surface modes are very small; damping effects would dissipate part of the initial 
bubble energy so that the energy convcrtcd to  the volumetric mode would be even 
less if these effects were considered. 

It should be pointed out that, though our analysis shows that an isolated bubble 
with (only) initial distortion is unlikely to radiate appreciable sound by nonlinear 
interactions, the book on this issue can not be closed ; there may be cases where this 
nonlinear interaction mechanism plays an important role in the energy conversion 
process. Bubble-bubble interaction is a possible example. Suppose that a bubble 
oscillates a t  10 kHz. Its energy is likely to be radiated and dissipated in about 10 
cycles, that  is, the acoustically active time of this bubble is about s. I n  the ocean 
environment, bubbles usually move, owing to  buoyancy or background pressure 
gradients, with a typical velocity of the order 0.2 m/s. Thus a bubble may cover a 
distance of the order 2 x lop4 m during its active lifetime. If the bubble is in a bubble 
cloud with the interbubble distance less than this value (which means a gas 
concentration larger than 1 YO by volume), it is possible that new energy is gained by 
the bubble distortion mode, owing to bubble-bubble interaction, before its initial 
energy is dissipated. Thus part of the energy involved in the bubble-bubble 
interaction may then sustain the surface mode to excite the volumetrical mode long 
enough to  be significant. 

Another possible case concerns the energy transfer from a turbulent bubbly flow 
to sound. In this case, the background turbulent flow has a characteristic lengthscale 
a t  the bubble oscillation frequencies that is small in comparison with the  bubble size. 
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Thus, as analysed by Crighton & Ffowcs Williams (1969), the turbulent flow cannot 
directly ring the bubble because its pressure fluctuations are not coherent over the 
bubble surface. However, this spacially non-uniform turbulent pressure on the 
bubble wall may deform the bubble, exciting bubble surface modes. These modes 
may then transfer their energy into sound by nonlinear interactions. Because the 
background turbulent flow is very energetic, i t  is possible that the sound from this 
'cascade ' energy transfer process is an appreciable component of the bubble-related 
sound. 

The authors would like to thank one of the referees who kindly pointed out the 
possible relevance of the nonlinear interaction mechanism to the bubble-bubble 
interaction problem 

Appendix 
In this Appendix, 

the energy equation 

briefly discussed in the paper. 

we first prove the following identities which are used to derive 

where E,, E,, E ,  and ET are respectively the total kinetic energy in water, the work 
done at  infinity by p , ,  the internal energy of the bubble and the energy associated 
with surface tension, and are given respectively by 

r 

E K  = J a(V$)zd3~,  

VB Pn 
y - 1 '  

E ,  = - 

ET = T Jsn ds,, (A 8) 

where (A 5 ) ,  (A 6) and (A 8) are obvious and (A 7 )  follows from the definition that the 
internal energy per unit volume for isotropic gas is equal to the pressure in the gas 
divided by 7-1 (see, for example, Landau & Lifshitz 1959) and noticing that the 
prcssure in the bubble is assumed to be uniform. 

The identity (A 1) becomes obvious from the transport theorem 
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with F = +(V$)2, the second term on the right-hand side being identically zero from 
(2.1). By taking the derivative of (A 6) with respect to t ,  it is also obvious that (A 2) 
holds. To demonstrate (A 3), we note that the t-derivative of (A 7) and the adiabatic 

dE d VB 
law (2.6) lead to 

* = - P B X .  

From the definition n,  = Vf/lVf 1 and the kinematic boundary condition (2.2), we 
have 

so that, on integrating over the bubble surface, 

where we have made use of the formula 

ls, P&dsB = p r F (  1 + 7)'sin 0 d0 drp. 
0 0  

Combining (A 10) and (A 12), the identity (A 3) follows immediately 
(A 4), we rewrite (A 8) as 

nB.nBdsB = T/v,V.n,d3x, 

where the surface integral on the bubble surface is transferred into a volume integral 
over the bubble volume V, through the divergence theorem. On taking the time 
derivative of this and using the transport theorem (A 9), we find that 

which can be transferred back to surface integrals to give 

This is precisely (A 4) once it is recognized that the first term on the right-hand side 
vanishes because a(nB.n,)/at = 0. 

Now, we derive expressions for E,, Ew, E ,  and E, in terms of the perturbation 
variables 7 and $. Since V2$ = 0, we have (V$)2 = V-($V$), so that the volume 
integral in the definition (A 5) for the kinetic energy EK can be transferred into 
surface integrals, which leads to 

E K  = Ism @v$.?Z, ds,-/sB@V$-~BdSB. 

The integral over the control surface S, vanishes if S, is chosen far away from the 
bubble because $ decays a t  least like 1 / ~ .  The integral over the bubble surface can 
be simplified by using the identities (A 11)  and (A 13), which yields 

E ,  = fi $ (1 + 7)2 sin Odedrp, 
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where 4 is to be evaluated at the bubble surface r = 1 +7 .  Expanding the integrand 
by the Taylor expansion (2.9), retaining terms up to the order 7' and using an 
overbar to denote the average over a unit sphere, it is straightforward to derive 

- 

(A 14) E K = - 2 n + - .  a7 
at 

The work done by p ,  a t  infinity, defined by (A 6) ,  is proportional to the mass flow 
through the control surface S,, which is equal to the mass flow through the bubble 
surface SB from the mass conservation law (compressibility being neglected). Thus, 
the surface integral in (A 6) can actually be performed on the bubble surface, namely, 

E ,  = 1 JsB V(b*nB dSB dt. 

The surface integral is now equal to dV,/dt according to (A 12), which can be used 
to further carry out the t-integral to  yield 

E ,  = (VB- V,) = 4 ~ ( 7 + ? ) ,  (A 15) 

where the last step follows from applying the Taylor expansion to V, with the result 
truncated after the term proportional to 7'. The bubble internal energy E ,  can be 
expressed in terms of the surface deformation 7 in a straightforward way because 

from the adiabatic law (2.6). Expanding V, in terms of 7, retaining terms up to the 
order q2 and substituting the results into the definition (A 7) ,  it is found that 

E ,  = '-4n(1+2T) (T+?-$y?). 
Y--l  

Finally the surface tension energy E ,  can be expressed in terms of rj by noticing that 

jSBd8, = Jr (1 + 7)  [( 1 + v ) ~  + (V,q)2]isin OdOdg7. 

Expanding the integrand in a power series of 7, the result to the order q2 gives 

E ,  = 41~T(1+27+;j"+i(V,7)~). (A 17) 
It can be seen that (A 16) and (A 17) contain terms independent of 7,  which are the 
internal energy and the surface-tension energy of the bubble in its equilibrium state. 
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